Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 969
Filtrar
1.
Nat Commun ; 15(1): 1538, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378737

RESUMO

Retinoic acid (RA) is involved in antero-posterior patterning of the chordate body axis and, in jawed vertebrates, has been shown to play a major role at multiple levels of the gene regulatory network (GRN) regulating hindbrain segmentation. Knowing when and how RA became coupled to the core hindbrain GRN is important for understanding how ancient signaling pathways and patterning genes can evolve and generate diversity. Hence, we investigated the link between RA signaling and hindbrain segmentation in the sea lamprey Petromyzon marinus, an important jawless vertebrate model providing clues to decipher ancestral vertebrate features. Combining genomics, gene expression, and functional analyses of major components involved in RA synthesis (Aldh1as) and degradation (Cyp26s), we demonstrate that RA signaling is coupled to hindbrain segmentation in lamprey. Thus, the link between RA signaling and hindbrain segmentation is a pan vertebrate feature of the hindbrain and likely evolved at the base of vertebrates.


Assuntos
Cordados , Petromyzon , Animais , Petromyzon/genética , Tretinoína/metabolismo , Vertebrados/genética , Rombencéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
2.
Mol Metab ; 80: 101886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246589

RESUMO

OBJECTIVE: The central melanocortin system is essential for the regulation of food intake and body weight. Agouti-related protein (AgRP) is the sole orexigenic component of the central melanocortin system and is conserved across mammalian species. AgRP is currently known to be expressed exclusively in the mediobasal hypothalamus, and hypothalamic AgRP-expressing neurons are essential for feeding. Here we characterized a previously unknown population of AgRP cells in the mouse hindbrain. METHODS: Expression of AgRP in the hindbrain was investigated using gene expression analysis, single-cell RNA sequencing, immunofluorescent analysis and multiple transgenic mice with reporter expressions. Activation of AgRP neurons was achieved by Designer Receptors Exclusively Activated by Designer Drugs (DREADD) and by transcranial focal photo-stimulation using a step-function opsin with ultra-high light sensitivity (SOUL). RESULTS: AgRP expressing cells were present in the area postrema (AP) and the adjacent subpostrema area (SubP) and commissural nucleus of the solitary tract (cNTS) of the mouse hindbrain (termed AgRPHind herein). AgRPHind cells consisted of locally projecting neurons as well as tanycyte-like cells. Food deprivation stimulated hindbrain Agrp expression as well as neuronal activity of subsets of AgRPHind cells. In adult mice that lacked hypothalamic AgRP neurons, chemogenetic activation of AgRP neurons resulted in hyperphagia and weight gain. In addition, transcranial focal photo-stimulation of hindbrain AgRP cells increased food intake in adult mice with or without hypothalamic AgRP neurons. CONCLUSIONS: Our study indicates that the central melanocortin system in the hindbrain possesses an orexigenic component, and that AgRPHind neurons stimulate feeding independently of hypothalamic AgRP neurons.


Assuntos
Hipotálamo , Melanocortinas , Camundongos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Camundongos Transgênicos , Melanocortinas/metabolismo , Rombencéfalo/metabolismo , Mamíferos/metabolismo
3.
Development ; 151(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251863

RESUMO

The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.


Assuntos
Células-Tronco Neurais , Proteoglicanas , Camundongos , Animais , Proteoglicanas/metabolismo , Sulfatos de Condroitina , Proteoglicanas de Sulfatos de Condroitina , Matriz Extracelular/metabolismo , Rombencéfalo/metabolismo , Células-Tronco Neurais/metabolismo
4.
Mol Metab ; 79: 101861, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142970

RESUMO

OBJECTIVE: The dorsal vagal complex (DVC) of the hindbrain is a major point of integration for central and peripheral signals that regulate a wide variety of metabolic functions to maintain energy balance. The REV-ERB nuclear receptors are important modulators of molecular metabolism, but their role in the DVC has yet to be established. METHODS: Male REV-ERBα/ß floxed mice received stereotaxic injections of a Cre expressing virus to the DVC to create the DVC REV-ERBα/ß double knockout (DVC RDKO). Control littermates received stereotaxic injections to the DVC of a green fluorescent protein expressing virus. Animals were maintained on a normal chow diet or a 60% high-fat diet to observe the metabolic phenotype arising from DVC RDKO under healthy and metabolically stressed conditions. RESULTS: DVC RDKO animals on high-fat diet exhibited increased weight gain compared to control animals maintained on the same diet. Increased weight gain in DVC RDKO animals was associated with decreased basal metabolic rate and dampened signature of brown adipose tissue activity. RDKO decreased gene expression of calcitonin receptor in the DVC and tyrosine hydroxylase in the brown adipose tissue. CONCLUSIONS: These results suggest a previously unappreciated role of REV-ERB nuclear receptors in the DVC for maintaining energy balance and metabolic rate potentially through indirect sympathetic outflow to the brown adipose tissue.


Assuntos
Tecido Adiposo Marrom , Rombencéfalo , Animais , Masculino , Camundongos , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Rombencéfalo/metabolismo , Aumento de Peso
5.
Nature ; 624(7991): 333-342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092915

RESUMO

The function of the mammalian brain relies upon the specification and spatial positioning of diversely specialized cell types. Yet, the molecular identities of the cell types and their positions within individual anatomical structures remain incompletely known. To construct a comprehensive atlas of cell types in each brain structure, we paired high-throughput single-nucleus RNA sequencing with Slide-seq1,2-a recently developed spatial transcriptomics method with near-cellular resolution-across the entire mouse brain. Integration of these datasets revealed the cell type composition of each neuroanatomical structure. Cell type diversity was found to be remarkably high in the midbrain, hindbrain and hypothalamus, with most clusters requiring a combination of at least three discrete gene expression markers to uniquely define them. Using these data, we developed a framework for genetically accessing each cell type, comprehensively characterized neuropeptide and neurotransmitter signalling, elucidated region-specific specializations in activity-regulated gene expression and ascertained the heritability enrichment of neurological and psychiatric phenotypes. These data, available as an online resource ( www.BrainCellData.org ), should find diverse applications across neuroscience, including the construction of new genetic tools and the prioritization of specific cell types and circuits in the study of brain diseases.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Animais , Camundongos , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Hipotálamo/citologia , Hipotálamo/metabolismo , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Fenótipo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Análise da Expressão Gênica de Célula Única , Transcriptoma/genética
7.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38015813

RESUMO

Hindbrain adrenergic/noradrenergic nuclei facilitate endocrine and autonomic responses to physical and psychological challenges. Neurons that synthesize adrenaline and noradrenaline target hypothalamic structures to modulate endocrine responses while descending spinal projections regulate sympathetic function. Furthermore, these neurons respond to diverse stress-related metabolic, autonomic, and psychosocial challenges. Accordingly, adrenergic and noradrenergic nuclei are integrative hubs that promote physiological adaptation to maintain homeostasis. However, the precise mechanisms through which adrenaline- and noradrenaline-synthesizing neurons sense interoceptive and exteroceptive cues to coordinate physiological responses have yet to be fully elucidated. Additionally, the regulatory role of these cells in the context of chronic stress has received limited attention. This mini-review consolidates reports from preclinical rodent studies on the organization and function of brainstem adrenaline and noradrenaline cells to provide a framework for how these nuclei coordinate endocrine and autonomic physiology. This includes identification of hindbrain adrenaline- and noradrenaline-producing cell groups and their role in stress responding through neurosecretory and autonomic engagement. Although temporally and mechanistically distinct, the endocrine and autonomic stress axes are complementary and interconnected. Therefore, the interplay between brainstem adrenergic/noradrenergic nuclei and peripheral physiological systems is necessary for integrated stress responses and organismal survival.


Assuntos
Adrenérgicos , Norepinefrina , Norepinefrina/metabolismo , Epinefrina , Tronco Encefálico/metabolismo , Rombencéfalo/metabolismo
8.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815090

RESUMO

Genetic variants affecting Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU) have been identified in several neurodevelopmental disorders (NDDs). HNRNPU is widely expressed in the human brain and shows the highest postnatal expression in the cerebellum. Recent studies have investigated the role of HNRNPU in cerebral cortical development, but the effects of HNRNPU deficiency on cerebellar development remain unknown. Here, we describe the molecular and cellular outcomes of HNRNPU locus deficiency during in vitro neural differentiation of patient-derived and isogenic neuroepithelial stem cells with a hindbrain profile. We demonstrate that HNRNPU deficiency leads to chromatin remodeling of A/B compartments, and transcriptional rewiring, partly by impacting exon inclusion during mRNA processing. Genomic regions affected by the chromatin restructuring and host genes of exon usage differences show a strong enrichment for genes implicated in epilepsies, intellectual disability, and autism. Lastly, we show that at the cellular level HNRNPU downregulation leads to an increased fraction of neural progenitors in the maturing neuronal population. We conclude that the HNRNPU locus is involved in delayed commitment of neural progenitors to differentiate in cell types with hindbrain profile.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Transtornos do Neurodesenvolvimento , Humanos , Cromatina , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Rombencéfalo/metabolismo
9.
PLoS One ; 18(8): e0286523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556474

RESUMO

Advances in tau biology and the difficulties of amyloid-directed immunotherapeutics have heightened interest in tau as a target for small molecule drug discovery for neurodegenerative diseases. Here, we evaluated OLX-07010, a small molecule inhibitor of tau self-association, for the prevention of tau aggregation. The primary endpoint of the study was statistically significant reduction of insoluble tau aggregates in treated JNPL3 mice compared with Vehicle-control mice. Secondary endpoints were dose-dependent reduction of insoluble tau aggregates, reduction of phosphorylated tau, and reduction of soluble tau. This study was performed in JNPL3 mice, which are representative of inherited forms of 4-repeat tauopathies with the P301L tau mutation (e.g., progressive supranuclear palsy and frontotemporal dementia). The P301L mutation makes tau prone to aggregation; therefore, JNPL3 mice present a more challenging target than mouse models of human tau without mutations. JNPL3 mice were treated from 3 to 7 months of age with Vehicle, 30 mg/kg compound dose, or 40 mg/kg compound dose. Biochemical methods were used to evaluate self-associated tau, insoluble tau aggregates, total tau, and phosphorylated tau in the hindbrain, cortex, and hippocampus. The Vehicle group had higher levels of insoluble tau in the hindbrain than the Baseline group; treatment with 40 mg/kg compound dose prevented this increase. In the cortex, the levels of insoluble tau were similar in the Baseline and Vehicle groups, indicating that the pathological phenotype of these mice was beginning to emerge at the study endpoint and that there was a delay in the development of the phenotype of the model as originally characterized. No drug-related adverse effects were observed during the 4-month treatment period.


Assuntos
Doenças Neurodegenerativas , Tauopatias , Proteínas tau , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Camundongos Transgênicos , Rombencéfalo/metabolismo , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/prevenção & controle , Tauopatias/genética
10.
Dev Dyn ; 252(11): 1323-1337, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37283310

RESUMO

BACKGROUND: Growth factors are important in the developing and mature nervous system to support the survival of neurons. Developmental signaling molecules are known for their roles in controlling neurogenesis and neural circuit formation. Whether or not these molecules also have roles in cell survival in the developing nervous system is poorly understood. Plexins are a family of transmembrane receptors that bind Semaphorin ligands and are known to function in the guidance of developing axons and blood vessels. RESULTS: In embryonic zebrafish, plexina4 is expressed widely in the brain, becoming largely restricted to the hindbrain as neurogenesis and differentiation proceed. Apoptosis is increased in the embryonic hindbrain of a plexina4ca307/ca307 CRISPR mutant. Based on the literature, we tested the secreted heat shock protein, Clusterin, as a candidate ligand to mediate cell survival through Plexina4. clusterin is expressed by the floor plate of the embryonic zebrafish hindbrain, in proximity to plexina4-expressing hindbrain cells. Morpholino-mediated knockdown of Clusterin increases cell apoptosis in the hindbrain, with additional cell death observed in epistasis experiments where Clusterin is knocked down in a plexina4 mutant background. CONCLUSIONS: Our data suggest that Plexina4 promotes cell survival in the developing zebrafish hindbrain, likely through a pathway independent of Clusterin.


Assuntos
Clusterina , Peixe-Zebra , Animais , Axônios/metabolismo , Sobrevivência Celular/genética , Clusterina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rombencéfalo/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Development ; 150(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37381820

RESUMO

Cerebellar granule neurons (CGNs) are the most abundant neurons in the human brain. Dysregulation of their development underlies movement disorders and medulloblastomas. It is suspected that these disorders arise in progenitor states of the CGN lineage, for which human models are lacking. Here, we have differentiated human hindbrain neuroepithelial stem (hbNES) cells to CGNs in vitro using soluble growth factors, recapitulating key progenitor states in the lineage. We show that hbNES cells are not lineage committed and retain rhombomere 1 regional identity. Upon differentiation, hbNES cells transit through a rhombic lip (RL) progenitor state at day 7, demonstrating human specific sub-ventricular cell identities. This RL state is followed by an ATOH1+ CGN progenitor state at day 14. By the end of a 56-day differentiation procedure, we obtain functional neurons expressing CGN markers GABAARα6 and vGLUT2. We show that sonic hedgehog promotes GABAergic lineage specification and CGN progenitor proliferation. Our work presents a new model with which to study development and diseases of the CGN lineage in a human context.


Assuntos
Cerebelo , Proteínas Hedgehog , Humanos , Proteínas Hedgehog/metabolismo , Rombencéfalo/metabolismo , Diferenciação Celular/fisiologia , Neurogênese , Células-Tronco
12.
Stem Cell Reports ; 18(7): 1500-1515, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37352849

RESUMO

Retrotrapezoid nucleus (RTN) neurons in the brainstem regulate the ventilatory response to hypercarbia. It is unclear how PHOX2B-polyalanine repeat mutations (PHOX2B-PARMs) alter the function of PHOX2B and perturb the formation of RTN neurons. Here, we generated human brainstem organoids (HBSOs) with RTN-like neurons from human pluripotent stem cells. Single-cell transcriptomics revealed that expression of PHOX2B+7Ala PARM alters the differentiation trajectories of the hindbrain neurons and hampers the formation of the RTN-like neurons in HBSOs. With the unguided cerebral organoids (HCOs), PHOX2B+7Ala PARM interrupted the patterning of PHOX2B+ neurons with dysregulation of Hedgehog pathway and HOX genes. With complementary use of HBSOs and HCOs with a patient and two mutant induced pluripotent stem cell lines carrying different polyalanine repetition in PHOX2B, we further defined the association between the length of polyalanine repetition and malformation of RTN-respiratory center and demonstrated the potential toxic gain of function of PHOX2B-PARMs, highlighting the uniqueness of these organoid models for disease modeling.


Assuntos
Proteínas Hedgehog , Proteínas de Homeodomínio , Humanos , Proteínas de Homeodomínio/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fatores de Transcrição/metabolismo , Rombencéfalo/metabolismo , Neurônios/metabolismo , Mutação
13.
Cell Tissue Res ; 392(3): 643-658, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36961563

RESUMO

The mammalian and avian auditory brainstem likely arose by independent evolution. To compare the underlying molecular mechanisms, we focused on Atoh7, as its expression pattern in the mammalian hindbrain is restricted to bushy cells in the ventral cochlear nucleus. We thereby took advantage of an Atoh7 centered gene regulatory network (GRN) in the retina including upstream regulators, Hes1 and Pax6, and downstream targets, Ebf3 and Eya2. In situ hybridization demonstrated for the latter four genes broad expression in all three murine cochlear nuclei at postnatal days (P) 4 and P30, contrasting the restricted expression of Atoh7. In chicken, all five transcription factors were expressed in all auditory hindbrain nuclei at embryonic day (E) 13 and P14. Notably, all five genes showed graded expression in the embryonic nucleus magnocellularis (NM). Atoh7 was highly expressed in caudally located neurons, whereas the other four transcription factors were highly expressed in rostrally located neurons. Thus, Atoh7 shows a strikingly different expression between the mammalian and avian auditory hindbrain. This together with the consistent absence of graded expression of GRN components in developing mammalian nuclei provide the first molecular support to the current view of convergent evolution as a major mechanism in the amniote auditory hindbrain. The graded expression of five transcription factors specifically in the developing NM confirms this nucleus as a central organizer of tonotopic features in birds. Finally, the expression of all five retinal GRN components in the auditory system suggests co-options of genes for development of sensory systems of distinct modalities.


Assuntos
Galinhas , Redes Reguladoras de Genes , Camundongos , Animais , Galinhas/genética , Rombencéfalo/metabolismo , Retina/metabolismo , Fatores de Transcrição/metabolismo , Mamíferos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
14.
Neuropeptides ; 99: 102324, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36791640

RESUMO

BACKGROUND: The oxidizable glycolytic end-product L-lactate is a gauge of nerve cell metabolic fuel stability that metabolic-sensory hindbrain A2 noradrenergic neurons impart to the brain glucose-regulatory network. Current research investigated the premise that hindbrain lactate deficiency exerts sex-specific control of energy sensor and transmitter marker protein responses to hypoglycemia in ventromedial hypothalamic nucleus (VMN) glucose-regulatory nitrergic and γ-aminobutyric acid (GABA) neurons. METHODS: Nitric oxide synthase (nNOS)- or glutamate decarboxylase65/67 (GAD)-immunoreactive neurons were laser-catapult-microdissected from male and female rat VMN after subcutaneous insulin injection and caudal fourth ventricular L-lactate or vehicle infusion for Western blot protein analysis. RESULTS: Hindbrain lactate repletion reversed hypoglycemia-associated augmentation (males) or inhibition (females) of nitrergic neuron nNOS expression, and prevented up-regulation of phosphorylated AMPK 5'-AMP-activated protein kinase (pAMPK) expression in those neurons. Hypoglycemic suppression of GABAergic neuron GAD protein was averted by exogenous lactate over the rostro-caudal length of the male VMN and in the middle region of the female VMN. Lactate normalized GABA neuron pAMPK profiles in hypoglycemic male (caudal VMN) and female (all VMN segments) rats. Hypoglycemic patterns of norepinephrine (NE) signaling were lactate-dependent throughout the male VMN, but confined to the rostral and middle female VMN. CONCLUSIONS: Results document, in each sex, regional VMN glucose-regulatory transmitter responses to hypoglycemia that are controlled by hindbrain lactate status. Hindbrain metabolic-sensory regulation of hypoglycemia-correlated nitric oxide or GABA release may entail AMPK-dependent mechanisms in specific VMN rostro-caudal segments in each sex. Additional effort is required to examine the role of hindbrain lactoprivic-sensitive VMN neurotransmitters in lactate-mediated attenuation of hypoglycemic hyperglucagonemia and hypercorticosteronemia in male and female rats.


Assuntos
Neurônios Adrenérgicos , Hipoglicemia , Ratos , Feminino , Masculino , Animais , Núcleo Hipotalâmico Ventromedial/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Láctico , Ratos Sprague-Dawley , Glucose/metabolismo , Hipoglicemia/metabolismo , Rombencéfalo/metabolismo , Norepinefrina/metabolismo , Hipoglicemiantes , Neurônios Adrenérgicos/metabolismo
15.
J Neurosci ; 43(12): 2140-2152, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813577

RESUMO

Ovulation disorders are a serious problem for humans and livestock. In female rodents, kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) are responsible for generating a luteinizing hormone (LH) surge and consequent ovulation. Here, we report that adenosine 5-triphosphate (ATP), a purinergic receptor ligand, is a possible neurotransmitter that stimulates AVPV kisspeptin neurons to induce an LH surge and consequent ovulation in rodents. Administration of an ATP receptor antagonist (PPADS) into the AVPV blocked the LH surge in ovariectomized (OVX) rats treated with a proestrous level of estrogen (OVX + high E2) and significantly reduced the ovulation rate in proestrous ovary-intact rats. AVPV ATP administration induced a surge-like LH increase in OVX + high E2 rats in the morning. Importantly, AVPV ATP administration could not induce the LH increase in Kiss1 KO rats. Furthermore, ATP significantly increased intracellular Ca2+ levels in immortalized kisspeptin neuronal cell line, and coadministration of PPADS blocked the ATP-induced Ca2+ increase. Histologic analysis revealed that the proestrous level of estrogen significantly increased the number of P2X2 receptor (an ATP receptor)-immunopositive AVPV kisspeptin neurons visualized by tdTomato in Kiss1-tdTomato rats. The proestrous level of estrogen significantly increased varicosity-like vesicular nucleotide transporter (a purinergic marker)-immunopositive fibers projecting to the vicinity of AVPV kisspeptin neurons. Furthermore, we found that some hindbrain vesicular nucleotide transporter-positive neurons projected to the AVPV and expressed estrogen receptor α, and the neurons were activated by the high E2 treatment. These results suggest that hindbrain ATP-purinergic signaling triggers ovulation via activation of AVPV kisspeptin neurons.SIGNIFICANCE STATEMENT Ovulation disorders, which cause infertility and low pregnancy rates, are a serious problem for humans and livestock. The present study provides evidence that adenosine 5-triphosphate, acting as a neurotransmitter in the brain, stimulates kisspeptin neurons in the anteroventral periventricular nucleus, known as the gonadotropin-releasing hormone surge generator, via purinergic receptors to induce the gonadotropin-releasing hormone/luteinizing hormone surge and ovulation in rats. In addition, histologic analyses indicate that adenosine 5-triphosphate is likely to be originated from the purinergic neurons in the A1 and A2 of the hindbrain. These findings may contribute to new therapeutic controls for hypothalamic ovulation disorders in humans and livestock.


Assuntos
Kisspeptinas , Receptores Purinérgicos P2 , Humanos , Ratos , Feminino , Animais , Kisspeptinas/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Hormônio Luteinizante/metabolismo , Hipotálamo Anterior/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Neurônios/metabolismo , Ovulação , Rombencéfalo/metabolismo , Trifosfato de Adenosina/metabolismo , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Adenosina/metabolismo
16.
Mol Metab ; 66: 101614, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244663

RESUMO

OBJECTIVE: Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. METHODS: To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used. RESULTS: Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and metabolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. CONCLUSIONS: Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis.


Assuntos
Insulina , Receptor de Insulina , Animais , Camundongos , Ratos , Channelrhodopsins/metabolismo , Comportamento Alimentar , Hiperfagia/metabolismo , Insulina/metabolismo , Camundongos Transgênicos , Obesidade/metabolismo , Receptor de Insulina/metabolismo , Rombencéfalo/metabolismo
17.
Cell Rep ; 39(10): 110915, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675784

RESUMO

Elucidating the cellular and molecular mechanisms that regulate the balance between progenitor cell proliferation and neuronal differentiation in the construction of the embryonic brain demands the combination of cell lineage and functional approaches. Here, we generate the comprehensive lineage of hindbrain boundary cells by using a CRISPR-based knockin zebrafish transgenic line that specifically labels the boundaries. We unveil that boundary cells asynchronously engage in neurogenesis undergoing a functional transition from neuroepithelial progenitors to radial glia cells, coinciding with the onset of Notch3 signaling that triggers their asymmetrical cell division. Upon notch3 loss of function, boundary cells lose radial glia properties and symmetrically divide undergoing neuronal differentiation. Finally, we show that the fate of boundary cells is to become neurons, the subtype of which relies on their axial position, suggesting that boundary cells contribute to refine the number and proportion of the distinct neuronal populations.


Assuntos
Divisão Celular Assimétrica , Peixe-Zebra , Animais , Diferenciação Celular , Neurogênese , Rombencéfalo/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
J Chem Neuroanat ; 122: 102102, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35483611

RESUMO

Caudal hindbrain A2 noradrenergic neurons provide critical metabolic-sensory input to the brain glucostatic circuitry. In males, insulin-induced hypoglycemia (IIH)-associated patterns of A2 cell dopamine-beta-hydroxylase (DßH) protein expression reflect diminution of the oxidizable fuel L-lactate, yet DßH exhibits sex-dimorphic responses to IIH. Here, retrograde tracing and combinatory single-cell laser-microdissection/multiplex qPCR techniques were used to examine whether lactate imposes sex-specific control of hypoglycemia-associated metabolic-sensory function and noradrenergic neurotransmission in A2 neurons that innervate the ventromedial hypothalamic nucleus (VMN), a key glucose-regulatory structure. VMN-projecting A2 neurons from each sex were characterized by presence or absence of nuclear glucokinase regulatory protein (nGKRP) immunoreactivity (-ir). IIH caused lactate-reversible up- or down-regulation of DßH mRNA in male and female nGKRP-ir-positive A2 neurons, respectively, and stimulated glucokinase (GCK) and sulfonylurea receptor-1 (SUR-1) gene expression in these cells in each sex. Hypoglycemia did not alter DßH, GCK, and SUR-1 transcript profiles in nGKRP-ir-negative male or female A2 neurons innervating the VMN. Estrogen receptor (ER) gene profiles in nGKRP-ir-positive neurons showed sex-specific [ER-alpha; G-protein-coupled estrogen-receptor-1 (GPER)] or sex-monomorphic (ER-beta) transcriptional responses to IIH. Fewer ER gene profiles were affected by IIH in nGKRP-ir-negative A2 neurons from male or female rats. Results show that during IIH, VMN-projecting A2 neurons may deliver altered, sex-dependent (nGKRP-positive) or unaffected (nGKRP-negative) noradrenergic input to the VMN. In each sex, metabolic-sensory gene profiles were reactive to hypoglycemia in nGKRP-ir-positive, not -negative A2 cells. Further studies are needed to elucidate the role of GKRP in transduction of metabolic imbalance into noradrenergic signaling, and to determine if input by one or more ER variants establishes sex differences in DßH transcriptional sensitivity to IIH.


Assuntos
Neurônios Adrenérgicos , Hipoglicemia , Neurônios Adrenérgicos/metabolismo , Animais , Biomarcadores/metabolismo , Catecolaminas/metabolismo , Feminino , Expressão Gênica , Hipoglicemia/genética , Hipoglicemia/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Masculino , Ratos , Rombencéfalo/metabolismo , Núcleo Hipotalâmico Ventromedial
19.
Stem Cells ; 40(2): 175-189, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257173

RESUMO

Hox genes play key roles in the anterior-posterior (AP) specification of all 3 germ layers during different developmental stages. It is only partially understood how they function in widely different developmental contexts, particularly with regards to extracellular signaling, and to what extent their function can be harnessed to guide cell specification in vitro. Here, we addressed the role of Hoxb1 in 2 distinct developmental contexts; in mouse embryonic stem cells (mES)-derived neuromesodermal progenitors (NMPs) and hindbrain neural progenitors. We found that Hoxb1 promotes NMP survival through the upregulation of Fgf8, Fgf17, and other components of Fgf signaling as well as the repression of components of the apoptotic pathway. Additionally, it upregulates other anterior Hox genes suggesting that it plays an active role in the early steps of AP specification. In neural progenitors, Hoxb1 synergizes with shh to repress anterior and dorsal neural markers, promote the expression of ventral neural markers and direct the specification of facial branchiomotorneuron (FBM)-like progenitors. Hoxb1 and shh synergize in regulating the expression of diverse signals and signaling molecules, including the Ret tyrosine kinase receptor. Finally, Hoxb1 synergizes with exogenous Glial cell line-derived neurotrophic factor (GDNF) to strengthen Ret expression and further promote the generation of FBM-like progenitors. Facial branchiomotorneuron-like progenitors survived for at least 6 months and differentiated into postmitotic neurons after orthotopic transplantation near the facial nucleus of adult mice. These results suggested that the patterning activity of Hox genes in combination with downstream signaling molecules can be harnessed for the generation of defined neural populations and transplantations with implications for neurodegenerative diseases.


Assuntos
Proteínas de Homeodomínio/metabolismo , Rombencéfalo , Animais , Diferenciação Celular/genética , Sobrevivência Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos , Rombencéfalo/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
Molecules ; 27(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056733

RESUMO

Flavonoids and polyunsaturated fatty acids due to low cytotoxicity in vitro studies are suggested as potential substances in the prevention of diseases associated with oxidative stress. We examined novel 6-hydroxy-flavanone and 7-hydroxy-flavone conjugates with selected fatty acids (FA) of different length and saturation and examined their cytotoxic and antioxidant potential. Our findings indicate that the conjugation with FA affects the biological activity of both the original flavonoids. The conjugation of 6-hydroxy-flavanone increased its cytotoxicity towards prostate cancer PC3 cells. The most noticeable effect was found for oleate conjugate. A similar trend was observed for 7-hydroxy-flavone conjugates with the most evident effect for oleate and stearate. The cytotoxic potential of all tested conjugates was not specific towards PC3 because the viability of human keratinocytes HaCaT cells decreased after exposure to all conjugates. Additionally, we showed that esterification of the two flavonoids decreased their antioxidant activity compared to that of the original compounds. Of all the tested compounds, only 6-sorbic flavanone showed a slight increase in antioxidant potential compared to that of the original compound. Our data show that conjugated flavonoids are better absorbed and enhance cytotoxic effects, but the presence of FA lowered the antioxidant potential.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Ácidos Graxos/química , Flavonas/química , Flavonas/farmacologia , Animais , Antineoplásicos/química , Antioxidantes/química , Avaliação Pré-Clínica de Medicamentos , Esterificação , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Células PC-3 , Ratos , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...